
SQL is the Structured Query Language, a standard means of asking for data from
databases, and is used to query the Catalog Archive Server (CAS). This page provides a
brief overview of SQL. Query examples are also available, with comments, as well as a
page of links to more detailed off-site documentation.

• Database Fundamentals
• Query Fundamentals
• Simple Logical/Mathematical Operations
• Querying Bit Flags
• Clean Photometry **IMPORTANT!**
• Excluding Invalid Data Values
• Changing Precision of Query Output
• Joins: Querying With Multiple Tables
• Manipulating Query Output: Using distinct, group by, order by, etc.
• Optimizing Queries **IMPORTANT!**
• Performance and Indices
• The Bookmark Lookup Bug **IMPORTANT!**
• Example Queries

Database Fundamentals

When performing queries, you must first decide which database you will be using. There
are two main databases in the CAS, Target and Best. In the DR4, these databases are
actually named TARGDR4 and BESTDR4. The Target database contains all
measurements as they were made when objects were targeted for spectroscopy. Best
contains the best data and most recent processings for the entire released sky area. The
area coverage is almost, but not exactly, the same. By default, queries are made on the
Best database. To use a different database, you can use the .. syntax to specify a table in
the other database, for instance:

TARGDR4..PhotoObj

For more details on the differences between Target and Best, please see the data model
page.

Each database contains a large number of tables, some of which contain photometric
measurements (such as PhotoObj), spectroscopic measurements (such as SpecObj), or
information about the observing conditions (Field) or survey geometry(TileBoundary).
See the data model page for more details.

In addition to the tables, we have defined Views, which are subsets or combinations of
the data stored in the tables. Views are queried the same way Tables are; they exist just to
make your life easier. For instance, the view Galaxy can be used to get photometric data

on objects we classify as galaxies, without having to specify the classification in your
query.

Both the Skyserver and CasJobs interfaces have a Schema Browser. It shows you all of
the available databases, the tables in each database, and the quantities stored in each
column of the tables.

Finally, we have created a variety of functions and stored procedures which let you
easily perform some common operations. Usually, their names are prefixed by f or sp,
like in fPhotoStatus or spGetFiberList. The full list of functions and store procedures is
found in the Schema Browser. Note that some functions are scalar-valued, meaning that
they return a single value, while others (such as the commonly used
dbo.fGetNearbyObjEq, are table-valued; they actually return a table of data, and not a
single number. This is important when interpreting the returned data and performing
joins.

Please note the caution about using function calls as noted in the Optimizing
Queries section when attempting queries over that return a large number of objects.

Query Fundamentals

Now that we have an overview of the database structure, how do we actually get data
out? You will have to write a query using SQL. The most basic query consists of three
parts:

1. A SELECT clause, which specifies the parameters you wish to retrieve;
2. A FROM clause, which specifies the database tables you want to extract the data

from;
3. A WHERE clause, which specifies the limitations/predicates you want to place

on the extracted data.

The WHERE clause is not necessary if you want to retrieve parameters of all objects in a
specified table, but this typically will be an overwhelming amount of data!

Note that the query language is insensitive to splitting the query over many lines. It is
also not case sensitive. To make queries more readable, it is common practice to write the
distinct query clauses on separate lines. The Sample Queries button on the CasJobs Query
page provides a variety of samples, ordered in complexity. For instance, to obtain the list
of unique Fields that have been loaded into the database, we use:

SELECT FieldID
FROM Field

You can just copy and paste this (or any other) query into the SQL Search window of
SkyServer, and press submit, or into the CasJobs query window, and press the submit
button.

If we want to retrieve multiple parameters from the database, we separate them with
commas:

SELECT ra,dec
FROM Galaxy

Of course, the parameters you request must be included in the table(s) you are querying!
Now, let's say we want magnitudes of all bright galaxies. We will need to specify a
magnitude range to do this:

SELECT u,g,r,i,z
FROM Galaxy
WHERE r<12 and r>0

Here, we have used the WHERE clause to provide a magnitude range. The and operator
is used to require that multiple limits be met. This leads us to...

Simple Logical and Mathematical Operators

Not only can we place limits on individual parameters, we can place multiple limits using
logical operators, as well as place limits on the results of mathematical operations on
multiple parameters. We may also retrieve results that are logical joins of multiple
queries. Here we list the logical, comparison, and mathematical operators.

The LOGICAL operators are AND,OR,NOT; they work as follows:

a b a AND b a OR b

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL

NULL NULL NULL NULL

When comparing values, you will use the COMPARISON operators:

Operator Description

< less than

> greater than

<= less than or equal to

>= greater than or equal to

= equal

<> or != not equal

In addition to the comparison operators, the special BETWEEN construct is available.
a BETWEEN x AND y is equivalent to a >= x AND a <= y

Similarly,
a NOT BETWEEN x AND y is equivalent to a < x OR a > y

Finally, the MATHEMATICAL operators (both numeric and bitwise) are:

Name Description Example Result

+ Addition 2 + 3 5

- Subtraction 2 - 3 -1

* Multiplication 2 * 3 6

/ Division 4 / 2 2

% Modulo (remainder) 5 % 4 1

POWER Exponentiation POWER (2.0,3.0) 8.0

SQRT Square root SQRT (25.0) 5.0

ABS Absolute value ABS (-5.0) 5.0

& Bitwise AND 91 & 15
01011011 & 00001111

11
00001011

| Bitwise OR 32 | 3
00100000 | 00000011

35
00100011

^ Bitwise XOR 17 # 5
00010001 # 00000101

20
00010100

~ Bitwise NOT ~1 -2

AVG Average AVG(ModelMag_r)

MIN Minimum MIN(ModelMag_r)

MAX Maximum MAX(ModelMag_r)

In addition, the usual mathematical and trigonometric functions are available in SQL,
such as COS, SIN, TAN, ACOS, etc..

Querying Bit Flags

Several SDSS tables contain bit-encoded flags to indicate various types of information
about the object or quantity in question (e.g., PhotoTag and PhotoObjAll tables each have
the flags field, SpecObj has zWarning flags etc.). This section describes how you can
test for flag values in your query. For sample queries that demonstrate the use of flags,
see the Errors using flags, Elliptical galaxies with model fits, Diameter limited sample,
LRG sample, and Clean photometry with flags sample queries for examples on how to
use flags.

Checking a single flag

To return rows for which the flag is set, the basic syntax for the constraint is:

(flag-column & bitmask) > 0
and to return rows for which the flag is not set:
(flag-column & bitmask) = 0
where bitmask is the binary value in which the bit corresponding to the flag is 1
and all other bits are 0. You can use the flag functions provided by the SkyServer
(listed in Schema Browser) to get the bitmask for a given flag, but if you are
scanning a large fraction of a large table like PhotoObj, you are better off not
making a function call for each row, and in that case you should first get the
actual binary value of the bitmask first and substitute that instead. This is
described in the Using dbo functions in your query subsection of the Optimizing
Queries section below.

For example, to select objects for which the BLENDED flag is set in PhotoTag,
you would use a query like:

SELECT top 10 objid, flags FROM PhotoTag
WHERE flags & dbo.fPhotoFlags('BLENDED') > 0

and to select only objects for which the flag is NOT set, use

SELECT top 10 objid, flags FROM PhotoTag
WHERE flags & dbo.fPhotoFlags('BLENDED') = 0

Checking multiple flags

To test if multiple flags are set, you can combine the values by adding them and
then testing the result.

To select objects for which all of several flags are set, generate the combined
bitmask by adding the individual flag bitmasks, then compare the result of
ANDing the combined bitmask with the flag column with the combined bitmask
itself, e.g.,

SELECT top 10 objid, flags FROM PhotoTag
WHERE
 (flags & (dbo.fPhotoFlags('NODEBLEND')
 + dbo.fPhotoFlags('BINNED1')
 + dbo.fPhotoFlags('BINNED2')))
 = (dbo.fPhotoFlags('NODEBLEND')
 + dbo.fPhotoFlags('BINNED1')
 + dbo.fPhotoFlags('BINNED2'))

To select objects for which at least one of several flags is set, you just need to
check that ANDing the combined bitmask with the flag column returns a non-zero
result, e.g.,

SELECT top 10 objid, flags FROM PhotoTag
WHERE
 (flags & (dbo.fPhotoFlags('NODEBLEND')
 + dbo.fPhotoFlags('BINNED1')
 + dbo.fPhotoFlags('BINNED2'))) > 0

To select objects for which none of several flags is set, the result of ANDing the
flag column with the combined bitmask must be 0, e.g.,

SELECT top 10 objid, flags FROM PhotoTag
WHERE
 (flags & (dbo.fPhotoFlags('NODEBLEND')
 + dbo.fPhotoFlags('BINNED1')
 + dbo.fPhotoFlags('BINNED2'))) = 0

Clean Photometry

The SDSS photo pipeline sets a number of flags that indicate the quality of the
photometry for a given object in the catalog. If you desire objects with only clean
photometry for science, you should be aware that you need to filter out unwanted
objects yourself in your query. This is not done automatically for you (e.g. with a
view of the PhotoObjAll table). The main reason is that the flag constraints that
are required for this filtering often impose a significant performance penalty on
your query, and may even invoke the bookmark lookup bug.

Please see the Clean Photometry sample query for help on how to use the
photometry flags to select only objects with clean photometry.

Excluding Invalid Data Values

As mentioned in the EDR Paper, the database designates quantities that are not
calculated for a particular object in a table with special values, as follows:

• The value of a quantity that has not been calculated is set to -9999.
• The value of an error that has not been calculated is set to -1000.

To exclude such invalid values from your query result, you should include
constraints in your WHERE clause explicity to filter them out, e.g.
SELECT ra,dec,u,err_u FROM PhotoObj
WHERE
 ra BETWEEN 180 AND 181
 AND dec BETWEEN -0.5 AND 0.5
 AND u BETWEEN -9999 AND 20.0 -- or "u > -9999 AND u < 20.0",
 -- instead of just "u < 20.0"
 AND err_u BETWEEN -1000 AND 0.1 -- or err_u > -1000 AND err_u
< 0.1,
 -- instead of just "err_u < 0.1"

Changing Precision of Query Output

Use the STR(column,n,d) SQL construct (where n is the total number of digits
and d is the number of decimal places) to set the precision of the column that your
query requests. The SkyServer returns values with a default precision that is set
for each data type, and this may not be enough for columns like ra, dec etc. See
the Selected neighbors in run or the Uniform Quasar Sample sample queries for
examples of how to use STR.

Joins: Querying With Multiple Tables

You may wish to obtain quantities from multiple tables, or place constraints on
quantities in one table while obtaining measurements from another. For instance,
you may want magnitudes (from PhotoObj) from all objects spectroscopically
identified (SpecObj) as galaxies. To perform these types of queries, you must use
a join. You can join any two (or more) tables in the databases as long as they have
some quantity in common (typically an object or field ID). To actually perform
the join, you must have a constraint in the WHERE clause of your query forcing
the common quantity to be equal in the two tables.Here is an example, getting the
g magnitudes for stars in fields where the PSF fitting worked well:

SELECT s.psfMag_g

FROM Star s, Field f
WHERE s.fieldID = f.fieldID
 and s.psfMag_g < 20
 and f.pspStatus = 2

Notice how we define abbreviations for the table names in the FROM clause; this
is not necessary but makes for a lot less typing. Also, you do not have to ask for
quantities to be returned from all the tables. You must specify all the tables on
which you place constraints (including the join) in the FROM clause, but you can
use any subset of these tables in the SELECT. If you use more than two tables,
they do not all need to be joined on the same quantity. For instance, this three way
join is perfectly acceptable:

SELECT p.objID,f.field,g.run
FROM PhotoObj p, Field f, Segment g
WHERE
 f.fieldid = p.fieldid
 and f.segmentid = g.segmentid

The type of joins shown above are called inner joins. In the above examples, we
only return those objects which are matched between the multiple tables. If we
want to include all rows of one of the tables, regardless of whether or not they are
matched to another table, we must perform an outer join. One example is to get
photometric data for all objects, while getting the spectroscopic data for those
objects that have spectroscopy.

In the example below, we perform a left outer join, which means that we will get
all entries (regardless of matching) from the table on the left side of the join. In
the example below, the join is on P.objID = s.BestObjID; therefore, we will get
all photometric (P) objects, with data from the spectroscopy if it exists. If there is
no spectroscopic data for an object, we'll still get the photometric measurements
but have nulls for the corresponding cpectroscopy.

select P.objID, P.ra, P.dec, S.SpecObjId, S.ra, S.dec
from PhotoObj as P left outer join SpecObjAll as S
on P.objID = s.BestObjID

You can join across more than one table, as long as every pair you are joining has
a quantity in common; not all tables need be joined on the same quantity. For
example:

SELECT TOP 1000
 g.run,
 f.field,
 p.objID
FROM
 photoObj p, field f, segment g
WHERE
 f.fieldid = p.fieldid
 and f.segmentid = g.segmentid

 and f.psfWidth_r > 1.2
 and p.colc > 400.0

Note how the Field and PhotoObj are joined on the fieldID, while the join
between Field and Segment uses segmentID.

When using table valued functions, you must do the join explicitly (rather than
using "="). To do this, we use the syntax
SELECT quantities
FROM table1
JOIN table2 on table1.quantity = table2.quantity
WHERE constraints
For instance, in the example below, we use the function dbo.fGetNearbyObjEq
to get all objects within a given radius (in this case, 1') of a specified coordinate.
This is a table-valued, so it returns a table, containing the ObjIDs and distances of
nearby objects. We want to get further photometric parameters on the returned
objects, so we must join the output table with PhotoObj.:

SELECT G.objID, GN.distance
FROM Galaxy as G
JOIN dbo.fGetNearbyObjEq(115.,32.5, 1) as GN
 on G.objID = GN.objID
WHERE (G.flags & dbo.fPhotoFlags('saturated')) = 0

Manipulating Query Output

SQL provides a number of ways to reorder, group, or otherwise arrange the output
of your queries. Some of these options are:

• count: Just tell me how many objects would be returned by my query.
Example:

SELECT count(r)
FROM Galaxy

• distinct: Return only the unique values of the quantities requested in the
SELECT statement. Example:

SELECT distinct run
FROM Field

• top: Return only the first n rows of the query results. Example:

SELECT top 100 r
FROM Star

• order by: Order the output by the specified quantities. Default is
ascending order, but you can specify descending as well. You can also
order by multiple columns. Example:

SELECT top 1000 u,g,r
FROM Star
order by g,r desc

• group by: Group the output by the specified quantities. For instance, you
could have all the stars in the output, followed by the galaxies. You could
also perform operations on the grouped quantities. You could get the min
and max magnitudes for stars and galaxies separately, as shown below:

SELECT min(r),max(r)
FROM PhotoPrimary
group by type

You can use this to count how many of each object type is loaded as
primary photometric objects, for instance:

SELECT count(r)
FROM PhotoPrimary
group by type

Optimizing Queries

It is easy to construct very complex queries which can take a long time to execute.
When writing queries, one can often rewrite them to run faster. This is called
optimization.

The first, and most trivial, optimization trick is to use the minimal Table or View
for your query. For instance, if all you care about are galaxies, use the Galaxy
view in your FROM clause, instead of PhotoObj. We have also created a
'miniature' version of PhotoObjAll, called PhotoTag. This miniature contains all
the objects in PhotoObjAll, but only a subset of the measured quantities. Using
the PhotoTag table to speed up the query only makes sense if you do NOT want
parameters that are only available in the full PhotoObjAll.

It is extremely useful to think about how a database handles queries, rather
than trying to write a plain, sequential list of constraints. NOT every query
that is syntactically correct will necessarily be efficient; the built-in query
optimizer is not perfect! Thus, writing queries such that they use the tricks
below can produce significant speed improvements.

Here is a staggering example of the importance of optimization:
Find the positions and magnitudes of photometric objects that have been Targeted
for spectroscopy as possible QSOs.

A user's first instinct would be to get the desired objects from the PhotoObj table
within the TARGDR4 database (which contains the information, including
targeting decisions, for objects when they were targeted (chosen) for
spectroscopy). So, this query might look like:

SELECT p.ra, p.dec, p.modelMag_i, p.extinction_i
FROM TARGDR4..PhotoObjAll p
WHERE (p.primtarget & 0x00000002 > 0) or (p.primtarget & 0x00000004 > 0)

That's really simple - all you are doing is checking if the primary target flags
(primtarget) are set for the two types of QSO targets. This query can take
hours, because a sequential scan of every object in the photometric database
is required!

One quick change which makes a difference is to simplify the WHERE clause, to
get rid of the or, by masking everything but bits 2,4, and checking if the result is
non zero. This changes the WHERE clause to:

WHERE (primtarget & 0x00000006) > 0

This helps a little, but not much - we are still scanning the entire PhotoObj table.
We can make our lives a lot better by realizing that the database developers have
anticipated that people will be interested in targetting information, and created a
smaller table TargetInfo, that contains only the Targetted objects, which is a
small subset of the entire photometric database! Using this table, we can rewrite
our query as (we do need a join with the Target table also):

SELECT p.ra, p.dec, p.i, p.extinction_i
FROM TargetInfo ti, Target t, PhotoObjAll p
WHERE (ti.primtarget & 0x00000006>0)
 and p.objid=t.bestobjid
 and t.targetid=ti.targetid

Note how most of the WHERE clause is performed using the Targetinfo table;
the SQL optimizer immediately recognizes that this table is much smaller than
PhotoObj, and does this part of the search first. The query now runs in about a
minute or two. That is two orders of magnitude improvement over the initial
method!.

Finally, we can recognize that all the quantities of interest are also in the
PhotoTag table, which contains all the objects in PhotoObjAll, but not all
measured quantities. The query will be:

SELECT p.ra, p.dec, p.ModelMag_i, p.extinction_i
FROM TargetInfo t, PhotoTag p
WHERE (t.primtarget & 0x00000006>0)
 and p.objid=t.targetobjid

This runs in 18 sec, and returns the same 32931 rows. Another factor of two in
speed! Note how PhotoTag does not contain the simplified i magnitude, and we
must use ModelMag_i instead.

Another of the simplest ways to make queries faster is to first perform a query
using only indexed quantities, and then select those parameters from the returned
subset of objects. An indexed quantity is one where a look-up table has effectively
been calculated, so that the database software does not have to do a time-
consuming sequential search through all the objects in the table. For instance, sky
coordinates cx,cy,cz are indexed using a Hierarchical Triangular Mesh (HTM).
So, you can make a query faster by rewriting it such that it is nested; the inner
query grabs the entire row for objects of interest based on the indexed quantities,
while the outer query then gets the specific quantities desired.

Using Views is convenient, but ...

This is a cautionary note about using views. Views are a great convenience that
enable you to access virtual subsets of tables. The Archive Intro page lists the
views defined on each table in the SDSS databases. However, there are a couple
of points to remember with regard to using views, when it comes to performance:

• Since a view is only a virtual subset of a table, every query on a view is
actually a query on the underlying table. This means, for example, when
you do a query on the Star view of the PhotoObjAll table, the query still
scans the PhotoObjAll table or its indices. There is no persistent physical
entry in the database corresponding to the Star view other than its
definition. In other words, there is no performance benefit to using a view,
it is only a conceptual convenience.

• Table hints are ignored if you are using a view instead of the table name in
the FROM clause. Hints can be included using the "WITH
(<hintname>[=<value>])" syntax. For example, if you say "SELECT ...
FROM Galaxy WITH (nolock)", the nolock hint is ignored. This is
especially important for the INDEX hint, which you will need to use to
avoid the bookmark lookup problem described below.

• For views of the PhotoObjAll table, as described below, you may be better
off using the PhotoTag table instead if the query covers a large fraction of
the table (millions of rows of results).

Using views of PhotoObjAll vs PhotoTag table

We've already seen above how using the PhotoTag table speeds up queries, but
this point needs reiterating, especially in the context of queries that search a large
fraction of the database. For queries that do not search large subsets of the DB
(large subset = significant fraction of spatial coverage, that corresponds to
millions of rows), it is convenient and recommended that you use the
PhotoObjAll views (PhotoObj, PhotoPrimary, Star, Galaxy, etc.). However, for
large queries that search over a good fraction of the database, there are at least 2

reasons why you should use the PhotoTag table instead in spite of the
inconvenience of having to explicitly specify the mode (primary/secondary)
and/or the object type (star, galaxy etc.) in the WHERE clause:

• The thinner phototag table is considerably faster to scan through because
more rows can be loaded into the cache at once compared with the much
wider photoobjall table (remember that the photoobjall views restrict the
number of rows selected from the table but not the columns).

• If you are accessing non-indexed columns in your WHERE clause, it will
probably cause a very inefficient bookmark lookup due to a SQL server
optimizer bug; in this case the workaround will require you to turn off
index use and do a full table scan. This is a hint to the optimizer which is
ignored if you are using a view instead of a table. Besides, the thinner
phototag table will be much faster to scan than the photoobjall table
anyway.

For example, consider sample query "Stars multiply measured":
-- Find stars with multiple measurements with magnitude variations >0.1.
-- Note that this runs very slowly unless explicit workarounds are
included
-- for some SQLServer Optimizer bugs, which are NOT included here

SELECT TOP 100
 S1.objID as objID1,
 S2.objID as ObjID2 -- select object IDs of star and its pair
FROM Star as S1, -- the primary star
 photoObj as S2, -- the second observation of the star
 neighbors as N -- the neighbor record
WHERE S1.objID = N.objID -- insist the stars are neighbors
 and S2.objID = N.neighborObjID -- using precomputed neighbors table
 and distance < 0.5/60 -- distance is 0.5 arc second
or less
 and S1.run != S2.run -- observations are two different
runs
 and S2.type = dbo.fPhotoType('Star') -- S2 is indeed a star
 and S1.u between 1 and 27 -- S1 magnitudes are reasonable
 and S1.g between 1 and 27
 and S1.r between 1 and 27
 and S1.i between 1 and 27
 and S1.z between 1 and 27
 and S2.u between 1 and 27 -- S2 magnitudes are reasonable.
 and S2.g between 1 and 27
 and S2.r between 1 and 27
 and S2.i between 1 and 27
 and S2.z between 1 and 27
 and (-- and one of the colors is
different.
 abs(S1.u-S2.u) > .1 + (abs(S1.Err_u) + abs(S2.Err_u))
 or abs(S1.g-S2.g) > .1 + (abs(S1.Err_g) + abs(S2.Err_g))
 or abs(S1.r-S2.r) > .1 + (abs(S1.Err_r) + abs(S2.Err_r))
 or abs(S1.i-S2.i) > .1 + (abs(S1.Err_i) + abs(S2.Err_i))
 or abs(S1.z-S2.z) > .1 + (abs(S1.Err_z) + abs(S2.Err_z))
)

This query invokes the bookmark lookup bug and takes several hours to run as it
is written above, if the TOP 100 is removed. If it is rewritten to use the PhotoTag
table twice, instead of the Star view and the PhotoObj view, then it does not do a
bookmark lookup and runs in a little over 2 hours on DR2. Note that the
shorthand u,g,r,i,z magnitudes and associated errors have to be replaced with the
full modelMag names since PhotoTag does not have the shorthand magnitudes.

SELECT
 S1.objID as objID1,
 S2.objID as ObjID2 -- select object IDs of star and its pair
FROM PhotoTag as S1, -- the primary star
 phototag as S2, -- the second observation of the star
 neighbors as N -- the neighbor record
WHERE S1.objID = N.objID -- insist the stars are neighbors
 and S2.objID = N.neighborObjID -- using precomputed neighbors table
 and distance < 0.5/60 -- distance is 0.5 arc second
or less
 and S1.type = 6
 and S2.type = 6 -- S2 is indeed a star
 and S1.run != S2.run -- observations are two different
runs
 and S1.modelMag_u between 1 and 27 -- S1 magnitudes are reasonable
 and S1.modelMag_g between 1 and 27
 and S1.modelMag_r between 1 and 27
 and S1.modelMag_i between 1 and 27
 and S1.modelMag_z between 1 and 27
 and S2.modelmag_u between 1 and 27 -- S2 magnitudes are reasonable.
 and S2.modelmag_g between 1 and 27
 and S2.modelmag_r between 1 and 27
 and S2.modelmag_i between 1 and 27
 and S2.modelmag_z between 1 and 27
 and (-- and one of the colors is
different.
 abs(S1.modelMag_u-S2.modelmag_u) > .1 +
 (abs(S1.modelMagErr_u) + abs(S2.modelmagErr_u))
 or abs(S1.modelMag_g-S2.modelmag_g) > .1 +
 (abs(S1.modelMagErr_g) + abs(S2.modelmagErr_g))
 or abs(S1.modelMag_r-S2.modelmag_r) > .1 +
 (abs(S1.modelMagErr_r) + abs(S2.modelmagErr_r))
 or abs(S1.modelMag_i-S2.modelmag_i) > .1 +
 (abs(S1.modelMagErr_i) + abs(S2.modelmagErr_i))
 or abs(S1.modelMag_z-S2.modelmag_z) > .1 +
 (abs(S1.modelMagErr_z) + abs(S2.modelmagErr_z))
)

Using dbo functions in your query

Finally, a caution about using function calls in queries. If your query is going to
match a large number of objects (million or more), using a function call,
especially one that operates on a constant or literal, in the WHERE clause is not a
good idea, because the function will be called once per matching row in that table,
resulting in a significant performance hit. Here is an example of this:
SELECT ...
FROM PhotoObj

WHERE
 flags & dbo.fPhotoFlags('BLENDED') > 0

In this case, it would be better to first do the pre-query:

SELECT dbo.fPhotoFlags('BLENDED')

to get the bitmask value for that flag, and then rewrite the above query as:

SELECT ...
FROM PhotoObj
WHERE
 flags & 8 > 0

This will avoid the wastefully repeated function call for each and every photobj in
the table.

Performance and Indices

Performance is usually only an issue when the PhotoObjAll table (and associated
views) is involved in a query, either directly or with a join. We have built in some
features to enhance performance for queries on this table. The first and foremost,
and the most effective performance enhancer, is the Hierarchical Triangular Mesh
(HTM) spatial index that we have developed at JHU and incorporated into each of
the SDSS databases. This is a multi-dimensional index that speeds up searches by
spatial decomposition of the sky.

In addition to the HTM, there are several indices built in the database on columns
of the various tables, including primary key, foreign key and other indices that
group frequently used columns.
Click here to view a table of all the current indices defined on the data.

PhotoTag is a 10% subset of PhotoObjAll that has the 60 most "popular" fields.

Both PhotoObj and PhotoTag are indexed and those indices are each a 2% subset
of PhotoObj.

The nice thing about the indices is that they get picked for you automatically and
they run 50x faster than reading the whole PhotoObj table and 5x faster than
reading the PhotoTag table.

The next version of the SQL Server database product will allow us to eliminate
PhotoTag (it will be an automatically selected index). But for now, cognoscenti
will have to use it if they can (if their question is covered by that 10% of the most
popular fields).

In an ideal world you would not have to know about indices. Unfortunately we do
not live in an ideal world (yet).

The strategy for selecting a few (less than 10,000) objects in a certain part of the
sky using the dbo.fGetObjFromRect() function works very well. But, when the
patch gets LARGE (more than 10,000 objects) then your ra-dec limit predicate is
probably going to be more efficient because it will be a linear scan over the data.

The Stars/Galaxy/PhotoPrimary/... Views all benefit from the indices on the base
tables. You should feel free to use them.

SQL Optimizer Bookmark Lookup Bug

The PhotoObjAll table is by far the largest table in the database, so queries on this
table (and its allied views) are the only ones that will be too slow under certain
circumstances. At current disk speeds (~ 400 MB/s peak), it should take about 15
minutes to do a sequential scan of the entire PhotoObjAll table in the BESTDR1
database (300+ GB), and about 30 minutes for BESTDR2..PhotoObjAll (700
GB), on an unloaded server. So even queries that scan the entire photoobj table
should run in about half an hour if they are not requesting a very large number of
rows (in which case it takes a long time to get the results back over the network).

Sometimes queries can run much slower than normal (5-10 times slower) if the
server is loaded down, so you should always try a slow query at a few different
times.

If after applying the advice given above and trying your best to optimize your
query, you find that it still runs very slowly (no output returned in more than an
hour or so, or your query times out), you may have run into the dreaded
bookmark lookup bug of the SQL Server query optimizer. Basically, this means
that the optimizer has chosen the incorrect plan for executing the query.

While there is no reliable way to predict what causes the bookmark bug to be
invoked, usually it happens when there are several constraints on non-indexed
quantities in a given table. For example, in the query

SELECT objID FROM PhotoObj
WHERE
(flags & 0x40006) = 0
AND
rowv*rowv + colv*colv > 4*(rowvErr*rowvErr + colvErr*colvErr)

If you include only one of the two constraints separated by the "and", the
optimizer will chose the correct plan, but if you include both, the optimizer goofs
big-time and opts to do a random search of the PhotoObj table instead of a
sequential scan. It decides that it will use the photoobj primary key index and for
each entry in the index, it will follow the link to the data (the "bookmark") and
find the flags and rowv, colv fields from the data page. This means a random disk
access for each object in the photoobj table. Naturally, this will be excruciatingly
slow since random access is several times slower than sequential access in disks.

If instead the optimizer picked a sequential scan of the whole photoobj table, the
query could be completed within half an hour (assuming the server isnt badly
loaded down). But with the chosen plan, it will take hours if not days! If you
suspect that the optimizer is choosing the wrong plan, the way around it is to force
the optimizer to ignore all the indices defined on that table. For example, you
would rewrite the above query as follows:

SELECT objID FROM PhotoObjAll WITH (index=0) -- turn off index use
WHERE
mode IN (1,2) AND -- because we replaced PhotoObj with PhotoObjAll
(flags & 0x40006) = 0
AND
rowv*rowv + colv*colv > 4*(rowvErr*rowvErr + colvErr*colvErr)

Note that we made 2 changes to the original query:

1. We replaced the PhotoObj view with the PhotoObjAll table. This is
necessary because hints like index=0 work only on tables and are ignored
on views. This means that we have to include the mode constraint in the
WHERE clause to restrict our search to primary and secondary objects,
which was done automatically when we selected the PhotoObj view.

2. We added the hint "WITH (index=0)" telling the optimizer to ignore all
the indices defined on that table (PhotoObjAll). This forces a sequential
scan of the table, and avoids the many random accesses required for the
index bookmark lookup.

5 hours vs 5 minutes!

Here is an example that demonstrates the dramatic speed improvement that this
workaround provides. The following is a query submitted by Jon Loveday from
the Astronomy Centre at the University of Sussex in the UK:

SELECT CAST(2*(petroMag_r - extinction_r + 0.25) AS int)/2.0 AS r,
2*count(*) AS N
FROM PhotoTag
WHERE

type = 3 AND mode = 1
AND run IN (SELECT DISTINCT run FROM Segment WHERE stripe<50)
AND petroMag_r - extinction_r < 22
AND (flags & 262158) = 0
GROUP BY cast(2*(petroMag_r - extinction_r + 0.25) as int)/2.0
ORDER BY cast(2*(petroMag_r - extinction_r + 0.25) as int)/2.0

This query takes five and a half hours to run on the DR2 database, and involves a
bookmark lookup on a phototag index. If you insert an (index=0) hint as shown
below, it completes in 5 minutes!

SELECT CAST(2*(petroMag_r - extinction_r + 0.25) AS int)/2.0 AS r,
2*count(*) AS N
FROM PhotoTag WITH (index=0) -- turn off index use
WHERE
type = 3 AND mode = 1
AND run IN (SELECT DISTINCT run FROM Segment WHERE stripe<50)
AND petroMag_r - extinction_r < 22
AND (flags & 262158) = 0
GROUP BY cast(2*(petroMag_r - extinction_r + 0.25) as int)/2.0
ORDER BY cast(2*(petroMag_r - extinction_r + 0.25) as int)/2.0

Unfortunately, we are stuck with the bookmark bug for the time being. It will be
fixed in the next version of SQL Server, SQL Server 2005 or Yukon, expected to
be available in Fall 2004 for beta release. We expect the fix to be incorporated
into the next SDSS Data Release (DR3) due to be made public in Jan 2005.

Roy Gal, Ani Thakar, Jim Gray, Alex Szalay
Last updated Apr 8, 2004.

